Giải bài tập trang 109 bài 1 Tổng ba góc của một tam giác Sách giáo khoa (SGK) Toán 7. Câu 6: Tìm các số đo…
Bài 6 trang 109 – Sách giáo khoa toán 7 tập 1
Tìm các số đo (x) ở các hình sau:
Bạn đang xem: Giải bài 6, 7, 8, 9 trang 109 SGK Toán 7
Giải:
Hình 55)
Theo định lí tổng hai góc nhọn của tam giác vuông phụ nhau ta áp dụng vào (Delta AHI,text{ có },widehat H = {90^0}) ta được:
(widehat{A}+widehat{AIH}= 90^0), (1)
Áp dụng vào (Delta BKI,text{ có },widehat K = {90^0}) ta được:
(widehat{B}) + (widehat{BIK} = 90^0) (2)
mà (widehat{AIH})= (widehat{BIK}) (vì hai góc đối đỉnh) (3)
Từ (1), (2) và (3) suy ra (widehat{A}) = (widehat{B})
Vậy (widehat{B}=x= 40^0)
Hình 56)
Theo định lí tổng hai góc nhọn của tam giác vuông phụ nhau ta áp dụng vào (Delta ABD,text{ có },widehat {ADB} = {90^0}) ta được:
(widehat{ABD}) +(widehat{A}= 90^0), (1)
Áp dụng vào (Delta ACE,text{ có },widehat {AEC} = {90^0}) ta được:
(widehat{ACE})+ (widehat{A}=90^0), (2)
Từ (1) và (2) suy ra (widehat{ACE}) = (widehat{ABD}=25^0)
Vậy (x=25^0)
Hình 57)
Ta có: (widehat{NMP}=widehat{NMI}) + (widehat{PMI}= 90^0), (1)
Theo định lí tổng hai góc nhọn của tam giác vuông phụ nhau ta áp dụng vào (Delta MNI,text{ có },widehat {MIN} = {90^0}) ta có :
(widehat{N }) + (widehat{NMI}= 90^0), (2)
Từ (1) và (2) suy ra (widehat{N }) = (widehat{PMI}=60^0)
Vậy (x=60^0)
Hình 58)
Theo định lí tổng hai góc nhọn của tam giác vuông phụ nhau ta áp dụng vào (Delta AHE,text{ có },widehat {AHE} = {90^0}) ta có :
(widehat{E }) + (widehat{A}=90^0)
(widehat{E }= 90^0- widehat{A} = 90^0- 55^0= 35^0)
(widehat{KBH }=widehat{BKE}+ widehat{E }) (Góc ngoài tam giác (BKE))
(= 90^0+ 35^0= 125^0)
Vậy (x=125^0)
Bài 7 trang 109 – Sách giáo khoa toán 7 tập 1
Cho tam giác (ABC) vuông tại (A). Kẻ (AH) vuông góc với (BC) ((H) nằm trên (BC)).
a) Tìm các cặp góc phụ nhau trong hình vẽ.
b) Tìm các cặp góc nhọn bằng nhau trong hình vẽ.
Giải
a) Tam giác (ABC) vuông tại (A) nên có (widehat{B }) + (widehat{C }= 90^0)
Hay (widehat{B }), (widehat{C }) phụ nhau,
Tam giác (AHB) vuông tại (H) nên có (widehat{B })+ (widehat{A_{1} }= 90^0)
Hay (widehat{B }), (widehat{A_{1} }) phụ nhau.
Tam giác (AHC) vuông tại (H) nên có (widehat{A_{2} })+ (widehat{C } = 90^0)
hay (widehat{A_{2} }), (widehat{C }) phụ nhau.
b)
Ta có (widehat{B }) + (widehat{C }= 90^0)
(widehat{B })+ (widehat{A_{1} }= 90^0)
(Rightarrow widehat{A_{1} }=widehat{C })
(widehat{B }) + (widehat{C }=90^0) và (widehat{A_{2} })+ (widehat{C }) = (90^0)
(Rightarrow widehat{A_{2} }) = (widehat{B })
Bài 8 trang 109 – Sách giáo khoa toán 7 tập 1
Cho tam giác (ABC) có (widehat{B}=widehat{C}= 40^0). Gọi (Ax) là tia phân giác của góc ngoài ở đỉnh (A), Hãy chứng tỏ (Ax// BC).
Giải
(widehat{CAD }) = (widehat{B})+ (widehat{C}) (góc ngoài của tam giác (ABC))
(= 40^0)+ (40^0) = (80^0)
(widehat{A_{2} }= frac{1}2widehat{CAD}=frac{80}2=40^0)
(A_2=widehat{BCA }) hai góc ở vị trí so le trong bằng nhau nên (Ax// BC)
Bài 9 trang 109 – Sách giáo khoa toán 7 tập 1
Hình 59 biểu diễn mặt cắt ngang của một con đê để đo góc nhọn (MOP) tạo bởi mặt phẳng nghiêng của con đê với phương nằm ngang, người ta dùng thước chữ (T) và đặt như hình vẽ((OAperp AB)). Tính góc (MOP), biết rằng dây dọi (BC) tạo với trục (BA) một góc (widehat{ABC }= 32^0)
Giải:
Ta có tam giác (ABC) vuông ở (A) nên
(widehat{ABC}+ widehat{ACB}= 90^0) (1)
Trong đó tam giác (OCD) vuông ở (D) có (widehat{MOP}= widehat{OCD}= 90^0) (2)
Mặt khác: ( widehat{ACB}=widehat{OCD}) (hai góc đối đỉnh) (3)
Từ (1), (2) và (3) suy ra: (widehat{MOP}= widehat{ABC}=32^0)
Trường THPT Ngô Thì Nhậm
Đăng bởi: THPT Ngô Thì Nhậm
Chuyên mục: Giải bài tập